Each inertia tensor is diagonalized by a rotational transformation
to the body coordinate system:
![\begin{displaymath}
{\bf I^P_{J}=A^{-1}_{J}I_JA_J}
\end{displaymath}](img320.png) |
(11.14) |
The transformation matrix
![${\bf A_J}$](img321.png)
is used to initialize rotational
variables such that
![${\bf A_J}$](img321.png)
=
![${\bf (A^{-1}_{J})^t}$](img322.png)
. Values for the
body-frame coordinates
![$r^B_{i}$](img323.png)
of group elements are obtained by
![\begin{displaymath}
r^B_{i}={\bf A^t_{J}}(r_i-R_J)
\end{displaymath}](img324.png) |
(11.15) |
The net force and torque acting on each body are determined by
summing the force and torque acting on each of its constituent atoms.
Center-of-mass variables are initialized with a two-step process. The
initial center-of-mass velocities are determined from the
atom properties VX,VY,VZ:
![\begin{displaymath}
V_J(t=0)={1\over M_J}\sum_{i\in J} m_iv_i
\end{displaymath}](img325.png) |
(11.16) |
These velocities are then used to advance the center-of-mass coordinates
![\begin{displaymath}
R_J(dt)=R_J(0)+V_J(0)dt+{1\over M_J}f_j(0)(dt)^2
\end{displaymath}](img326.png) |
(11.17) |
The more stable Euler-Cayley
parameters (also referred to as quaternions)
are used as rotational variables instead of the Euler angles
,
,
(cf. Goldstein (1980)).
They are defined in
Eq. 2.1.
The quaternions
are initialized using a first-order approximation to their equation of
motion:
![\begin{displaymath}
\dot{q}={\bf Q}\omega'
\end{displaymath}](img327.png) |
(11.18) |
where
![$\dot{q}$](img328.png)
is the four-vector (
![$\dot{q}_0$](img329.png)
,
![$\dot{q}_1$](img330.png)
,
![$\dot{q}_2$](img331.png)
,
![$\dot{q}_3$](img332.png)
),
![$\omega'$](img333.png)
is the four-vector (0,
![$\omega_x$](img334.png)
,
![$\omega_y$](img335.png)
,
![$\omega_z$](img336.png)
), and
![${\bf Q}$](img337.png)
is the matrix that gives their time evolution:
![\begin{displaymath}
{\bf Q}={1\over 2}\left(\begin{array}{rrrr}
q_0 & -q_1 & -q...
...3 & q_0 & -q_1 \\
q_3 & -q_2 & q_1 & q_0
\end{array} \right)
\end{displaymath}](img338.png) |
(11.19) |
Thus one obtains
![\begin{displaymath}
q({1\over 2}dt)=q(0)+{1\over 2}{\bf Q}(0)\omega'(0)dt
\end{displaymath}](img339.png) |
(11.20) |
The initial angular velocity
![$\omega$](img108.png)
follows directly from the
initial angular momentum, which is determined by
![\begin{displaymath}
J_J(0)=\sum_{i\in J} (r_i-R_J)\times p_i
\end{displaymath}](img340.png) |
(11.21) |
where
![$p_i$](img341.png)
is the momentum of the
![${\rm i^{th}}$](img342.png)
atom of the rigid body.
The initial half-step advanced angular momentum can be expressed as
![\begin{displaymath}
J_J({1\over 2}dt)=J_J(0)+{1\over 2}N(0)
\end{displaymath}](img343.png) |
(11.22) |
and the first advancement of the center-of-mass coordinates
can be written as
![\begin{displaymath}
R_J(dt)=R_J(0)+V_J(0)dt+{1\over 2}f_J(0){(dt)^2 \over M_J}
\end{displaymath}](img344.png) |
(11.23) |
Xplor-NIH 2024-09-13